General System Usage

  1. Noble, L. D., Colbrunn, R. W., Lee, D. G., Van Den Bogert, A. J., & Davis, B. L. (2010). Design and validation of a general purpose robotic testing system for musculoskeletal applications. Journal of Biomechanical engineering132(2), 025001.


  1. Chokhandre, S., Neumann, E. E., Nagle, T. F., Colbrunn, R. W., Flask, C. A., Colak, C., . . . Erdemir, A. (2021). Specimen specific imaging and joint mechanical testing data for next generation virtual knees. Data Brief, 35, 106824. doi:10.1016/j.dib.2021.106824
  1. Grantham, W. J., Aman, Z. S., Brady, A. W., Rosenberg, S. I., Lee Turnbull, T., Storaci, H. W., . . . LaPrade, R. F. (2020). Medial Patellotibial Ligament Reconstruction Improves Patella Tracking When Combined With Medial Patellofemoral Reconstruction: An In Vitro Kinematic Study. Arthroscopy, 36(9), 2501-2509. doi:10.1016/j.arthro.2020.05.014
  1. Cone, S. G., Lambeth, E. P., Piedrahita, J. A., Spang, J. T., & Fisher, M. B. (2020). Joint laxity varies in response to partial and complete anterior cruciate ligament injuries throughout skeletal growth. J Biomech, 101, 109636. doi:10.1016/j.jbiomech.2020.109636
  1. Colbrunn, R. W., Dumpe, J. E., Nagle, T. F., Kolmodin, J. D., Barsoum, W. K., & Saluan, P. M. (2019). Robotically Simulated Pivot Shift That Represents the Clinical Exam. J Orthop Res, 37(12), 2601-2608. doi:10.1002/jor.24439
  1. Cone, S. G., Lambeth, E. P., Ru, H., Fordham, L. A., Piedrahita, J. A., Spang, J. T., & Fisher, M. B. (2019). Biomechanical Function and Size of the Anteromedial and Posterolateral Bundles of the ACL Change Differently with Skeletal Growth in the Pig Model. Clin Orthop Relat Res, 477(9), 2161-2174. doi:10.1097/CORR.0000000000000884.
  1. Cone, S. G., Piedrahita, J. A., Spang, J. T., & Fisher, M. (2019). In Situ Joint Stiffness Increases During Skeletal Growth but Decreases Following Partial and Complete Anterior Cruciate Ligament Injury. J Biomech Eng. doi:10.1115/1.4044582
  1. Mutnal, A., Leo, B. M., Vargas, L., Colbrunn, R. W., Butler, R. S., & Uribe, J. W. (2015). Biomechanical analysis of posterior cruciate ligament reconstruction with aperture femoral fixation. Orthopedics38(1), 9-16.

  1. Pathare, N. P., Nicholas, S. J., Colbrunn, R., & McHugh, M. P. (2014). Kinematic analysis of the indirect femoral insertion of the anterior cruciate ligament: implications for anatomic femoral tunnel placement. Arthroscopy: The Journal of Arthroscopic & Related Surgery30(11), 1430-1438.
  1. Barsoum, W. K., Lee, H. H., Murray, T. G., Colbrunn, R., Klika, A. K., Butler, S., & Van den Bogert, A. J. (2011). Robotic testing of proximal tibio‐fibular joint kinematics for measuring instability following total knee arthroplasty. Journal of Orthopaedic Research29(1), 47-52.
  1. Chokhandre, S., Colbrunn, R., Bennetts, C., & Erdemir, A. (2015). A Comprehensive Specimen-Specific Multiscale Data Set for Anatomical and Mechanical Characterization of the Tibiofemoral Joint. PloS one10(9), e0138226.


  1. Bonner, T. F., Colbrunn, R. W., Bottros, J. J., Mutnal, A. B., Greeson, C. B., Klika, A. K., ... & Barsoum, W. K. (2015). The Contribution of the Acetabular Labrum to Hip Joint Stability: A Quantitative Analysis Using a Dynamic Three-Dimensional Robot Model. Journal of biomechanical engineering137(6), 061012.
  1. Colbrunn, R. W., Bottros, J. J., Butler, R. S., Klika, A. K., Bonner, T. F., Greeson, C., ... & Barsoum, W. K. (2013). Impingement and stability of total hip arthroplasty versus femoral head resurfacing using a cadaveric robotics model. Journal of Orthopaedic Research31(7), 1108-1115.


  1. Golubovsky, J. L., Colbrunn, R. W., Klatte, R. S., Nagle, T. F., Briskin, I. N., Chakravarthy, V. B., . . . Steinmetz, M. P. (2019). Development of a novel in vitro cadaveric model for analysis of biomechanics and surgical treatment of Bertolotti syndrome. Spine J. doi:10.1016/j.spinee.2019.10.011
  1. Lee, B. S., Walsh, K. M., Healy, A. T., Colbrunn, R., Butler, R. S., Goodwin, R. C., . . . Mroz, T. E. (2018). Biomechanics of L5/S1 in Long Thoracolumbosacral Constructs: A Cadaveric Study. Global Spine J, 8(6), 607-614. doi:10.1177/2192568218759037

  1. Lubelski, D., Healy, A. T., Mageswaran, P., Colbrunn, R., & Schlenk, R. P. (2019). Analysis of adjacent-segment cervical kinematics: the role of construct length and the dorsal ligamentous complex. J Neurosurg Spine, 1-8. doi:10.3171/2019.7.SPINE19279
  1. van Dijk, L. A., Barrere-de Groot, F., Rosenberg, A., Pelletier, M., Christou, C., de Bruijn, J. D., & Walsh, W. R. (2020). MagnetOs, Vitoss, and Novabone in a Multi-endpoint Study of Posterolateral Fusion: A True Fusion or Not? Clin Spine Surg. doi:10.1097/BSD.0000000000000920
  1. van Dijk, L. A., Duan, R., Luo, X., Barbieri, D., Pelletier, M., Christou, C., . . . de Bruijn, J. D. (2018). Biphasic calcium phosphate with submicron surface topography in an Ovine model of instrumented posterolateral spinal fusion. JOR Spine, 1(4), e1039. doi:10.1002/jsp2.1039
  1. Walsh, W. R., Pelletier, M. H., Wang, T., Lovric, V., Morberg, P., & Mobbs, R. J. (2019). Does implantation site influence bone ingrowth into 3D-printed porous implants? Spine J, 19(11), 1885-1898. doi:10.1016/j.spinee.2019.06.020
  1. Mageswaran, P., Techy, F., Colbrunn, R. W., Bonner, T. F., & McLain, R. F. (2012). Hybrid dynamic stabilization: a biomechanical assessment of adjacent and supraadjacent levels of the lumbar spine: Laboratory investigation. Journal of Neurosurgery: Spine17(3), 232-242.
  1. Perry, T. G., Mageswaran, P., Colbrunn, R. W., Bonner, T. F., Francis, T., & McLain, R. F. (2014). Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage: Laboratory investigation. Journal of Neurosurgery: Spine21(3), 481-488.
  1. Mageswaran, P., McLain, R. F., Colbrunn, R., Bonner, T., Hothem, E., & Bartsch, A. (2013). Plate fixation in the cervical spine: traditional paramedian screw configuration compared with unique unilateral configuration: Laboratory investigation. Journal of Neurosurgery: Spine18(6), 575-581.
  1. Techy, F., Mageswaran, P., Colbrunn, R. W., Bonner, T. F., & McLain, R. F. (2013). Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study. The Spine Journal13(5), 572-579.

  1. Healy, A. T., Lubelski, D., Mageswaran, P., Bhowmick, D. A., Bartsch, A. J., Benzel, E. C., & Mroz, T. E. (2014). Biomechanical analysis of the upper thoracic spine after decompressive procedures. The Spine Journal14(6), 1010-1016.

  1. Lubelski, D., Healy, A. T., Mageswaran, P., Benzel, E. C., & Mroz, T. E. (2014). Biomechanics of the lower thoracic spine after decompression and fusion: a cadaveric analysis. The Spine Journal14(9), 2216-2223.

  1. Healy, A. T., Sundar, S. J., Cardenas, R. J., Mageswaran, P., Benzel, E. C., Mroz, T. E., & Francis, T. B. (2014). Zero-profile hybrid fusion construct versus 2-level plate fixation to treat adjacent-level disease in the cervical spine: Laboratory investigation. Journal of Neurosurgery: Spine21(5), 753-760.

  1. Healy, A. T., Lubelski, D., West, J. L., Mageswaran, P., Colbrunn, R., & Mroz, T. E. (2016). Biomechanics of open-door laminoplasty with and without preservation of posterior structures. Journal of Neurosurgery: Spine24(5), 746-751.

  1. Kshettry, V. R., Healy, A. T., Colbrunn, R., Beckler, D. T., Benzel, E. C., & Recinos, P. F. (2016). Biomechanical evaluation of the craniovertebral junction after unilateral joint-sparing condylectomy: implications for the far lateral approach revisited. Journal of Neurosurgery, 1-8.


  1. Lee, D. G., & Davis, B. L. (2009). Assessment of the effects of diabetes on midfoot joint pressures using a robotic gait simulator. Foot & ankle international30(8), 767-772.


  1. Wermers, J., Schliemann, B., Raschke, M. J., Michel, P. A., Heilmann, L. F., Dyrna, F., . . . Katthagen, J. C. (2021). Glenoid concavity has a higher impact on shoulder stability than the size of a bony defect. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-021-06562-3
  1. Nolte, P. C., Miles, J. W., Tanghe, K. K., Brady, A. W., Midtgaard, K. S., Cooper, J. D., . . . Millett, P. J. (2020). The effect of glenosphere lateralization and inferiorization on deltoid force in reverse total shoulder arthroplasty. J Shoulder Elbow Surg. doi:10.1016/j.jse.2020.10.038
  1. Bokshan, S. L., DeFroda, S. F., Gil, J. A., Badida, R., Crisco, J. J., & Owens, B. D. (2019). The 6-O'clock Anchor Increases Labral Repair Strength in a Biomechanical Shoulder Instability Model. Arthroscopy, 35(10), 2795-2800. doi:10.1016/j.arthro.2019.05.012
  1. Bokshan, S. L., Gil, J. A., DeFroda, S. F., Badida, R., Crisco, J. J., & Owens, B. D. (2019). Biomechanical Comparison of the Long Head of the Biceps Tendon Versus Conjoint Tendon Transfer in a Bone Loss Shoulder Instability Model. Orthop J Sports Med, 7(11), 2325967119883549. doi:10.1177/2325967119883549
  1. Nacca, C., Gil, J. A., Badida, R., Crisco, J. J., & Owens, B. D. (2018). Critical Glenoid Bone Loss in Posterior Shoulder Instability. Am J Sports Med, 46(5), 1058-1063. doi:10.1177/0363546518758015
  1. Nacca, C., Gil, J. A., DeFroda, S. F., Badida, R., & Owens, B. D. (2018). Comparison of a Distal Tibial Allograft and Scapular Spinal Autograft for Posterior Shoulder Instability With Glenoid Bone Loss. Orthop J Sports Med, 6(7), 2325967118786697. doi:10.1177/2325967118786697
  1. Kaar, S. G., Fening, S. D., Jones, M. H., Colbrunn, R. W., & Miniaci, A. (2010). Effect of humeral head defect size on glenohumeral stability a cadaveric study of simulated Hill-Sachs defects. The American journal of sports medicine38(3), 594-599.


  1. Badida, R., Garcia-Lopez, E., Sise, C., Moore, D., & Crisco, J. (2020). An Approach to Robotic Testing of the Wrist Using 3-D Imaging and a Hybrid Control Strategy. J Biomech Eng. doi:10.1115/1.4046050


  1. Frangiamore, S. J., Bigart, K., Nagle, T., Colbrunn, R., Millis, A., & Schickendantz, M. S. (2018). Biomechanical analysis of elbow medial ulnar collateral ligament tear location and its effect on rotational stability. J Shoulder Elbow Surg, 27(11), 2068-2076. doi:10.1016/j.jse.2018.05.020

Have a question or need a custom quote?

Designed with flexibility and customization in mind, simVITRO® can be configured to provide unique solutions to your challenges. Our team’s extensive experience allows us to provide turn-key solutions based on our systems engineering approach. Learn More…